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Time-Domain Simulation of Electromagnetic
Field Using a Symplectic Integrator
T. Hirono, W. W. Lui, Member, IEEE, and K. Yokoyama,Senior Member, IEEE

Abstract—A new high-order-accurate method for time-domain
simulation of a electromagnetic field is proposed. This method
is analogous to the one used in classical mechanics for con-
tinuous system analysis. The symplectic integrator in classical
mechanics is utilized to calculate the time dependence of the
field. Using the same grid spacing and time step, it is demon-
strated that the proposed method is more accurate than the
conventional finite-difference time-domain (FDTD) method for
a two-dimensional problem. This method is also applicable to
full-vectorial Maxwell’s equations in three dimensions.

Index Terms—Electromagnetic fields, FDTD methods, numer-
ical methods, symplectic integrator, time-domain analysis.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been used extensively for electromagnetic field simula-

tion [1], [2]. A problem with the FDTD method is its demand
for vast computational resources. One solution is to use a
more accurate scheme than the conventional one to reduce
the required memory size. Higher order differencing schemes
have been proposed [3]–[5] and their performance for practical
applications have been studied [6]–[9]. New higher order
differencing schemes are also attracting attention [9], [10].

This letter introduces a new time-domain method for deriv-
ing high-order-accurate schemes. We treat the electromagnetic
field as a continuous system in classical mechanics [11].
The treatment enables us to use a numerical method for
a Hamiltonian system known as the symplectic integrator
method [12]–[18]. It is a Runge–Kutta method which preserves
the symplectic structure of the phase space. Its usefulness has
been verified [12], [13], [16], [18]. Our results of elemen-
tary simulations of the electromagnetic field show that the
symplectic integrator method is promising.

II. FORMULATION

We outline the explicit symplectic integrator for a system
governed by the Hamiltonian , in which is
generalized coordinates andis momenta conjugate to [18].
The th-order symplectic integrator for a time-step

is

(1)
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Fig. 1. Electric field profiles simulating the propagation of the
two-dimensional TE-mode plane wave by means of the fourth-order
symplectic method [Scheme (I) in the text] and the FDTD method. The
simulated region is a square whose sides are ten unit-length and are parallel
to thex or y axis. The wave propagates diagonally. Permittivity is 1.0 and
permeability is 1.0 in the square. Thus, the phase velocity of the wave is
1.0 unit-length per unit-time. The boundary condition is periodic. In both
methods, the plane lattice is square and its spacing is 0.05 unit-length
and the time-step is 0.025 unit-time. The dot-dash line indicates the initial
electric field profile on the diagonal line of the simulated region. The
solid line indicates the profile after 20 000 time-step calculations by the
symplectic method. The dotted line indicates the profile after 20 000 time-step
calculations by the FDTD method.

where and are symplectic mappings from
to as

(2)

(3)

Parameters and are determined, so that can
approximate the time evolution of the system with the accuracy
of the order . They are

for [14] and

for [16].
In our formulation, the Hamiltonian, , of the electromag-

netic field is

(4)

where

and orthogonal space coordinates;
permittivity;
permeability;
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Fig. 2. Field profile errors of the fourth-order symplectic method [Scheme
(I) in the text] and the FDTD method as functions of timet. The simulation
conditions are the same as those in Fig. 1, except for the calculation time-step
and the plane lattice spacing.

vector potential;
electric displacement;
current density.

We consider as the generalized coordinates andas the
generalized momenta conjugate to. The equations of motion
are

(5)

(6)

We use a gauge in which the scalar potential is zero. Thus
(5) and (6) are equivalent to Maxwell’s equations when the
following equation is valid over the entire simulated region
with the initial condition

, (7)

where is the charge density.
Here, we introduce two spatial discretizing procedure for

the system. One procedure is the application of the finite-
difference method to (6). We apply it to the two-dimensional
TE-mode condition with constant in the simulated region
and without current density and make Scheme (I). When the
electric field vector is along the axis, the right side of (6) is
reduced to where is the two-dimensional
Laplacian. The Laplacian is descritized using the fourth-order
approximation on the square lattice such that

(8)

where

function of ;
value on the lattice point ;

(a)

(b) (c)

Fig. 3. Full vectorial three-dimensional simulation by means of the sym-
plectic method [Scheme (II) in text]. (a) Schematic drawing of the simulated
structure. The rectangular prism is a waveguide whose permittivity is 10%
larger than the environment. The sinusoidal wave, whose vector potential is
polarized in thex-direction, radiates from the point source. The space lattice
is cubic and its spacing is one-tenth of the wavelength. The time increment is
one-twentieth of the wave period. (b) The amplitude of thex component of
the vector potential in they-z plane [i.e. plane A]. (c) The amplitude (x 40)
of the y component of the vector potential in thex-y plane (i.e., plane B).

value on the lattice point ;
plane lattice spacing.

In Scheme (I), the integrator is used.
Scheme (II) is based on another procedure in which the

Hamiltonian (4) is discretized by the shape functions of the
finite-element method. We use the linear serendipity element
for cubic lattice [19] to integrate the term containing .
The integration of the term containingor is substituted by
the summation over the cubic lattice points. is applied
to the spatially discritized Hamiltonian.

The scheme, to which the integrator is applied, ap-
proximates all Maxwell’s equations with accuracy of the order

. Thus, the charge conservation condition is satisfied
with the same order of accuracy.

III. N UMERICAL RESULTS AND DISCUSSION

We compare the long-term simulation accuracy of Scheme
(I) to that of the FDTD method in terms of the initial
value problem under the periodic boundary condition. In both
calculation methods, initial values are discretized from the
initial values of a continuous model, in which a plane wave
with a nonsinusoidal electric field profile propagates without
any changes in the profile. Fig. 1 shows the initial profile of
the electric field on the diagonal line in the simulated square
region, the profile after Scheme-(I) calculation for 20 000 time
steps, and that obtained by the FDTD method for the same
time steps. The Scheme-(I) calculation preserves the initial
field profile better than the FDTD method. Scheme (I) takes
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almost double the computation time of the FDTD method on
a HP-9000 work station.

Fig. 2 shows field profile errors as a function of time. In
this example, the error of Scheme (I) with the lattice spacing of
0.1 unit-length is almost the same as that of the FDTD method
with the lattice spacing of 0.05 unit-length. Alternatively,
using Scheme (I), the total grid number is reduced without
compromising the accuracy of the calculation results.

From our experience, we found Scheme (I) is at least as
stable as the FDTD method. Scheme (I) is applicable to the
problem in which is not constant in space. This scheme
is stable under the perfect conductor boundary condition.
When Scheme (I) is applied in the unbounded domain, the
introduction of losses near the lattice boundary prevents the
reflection of outgoing waves at the boundary.

Fig. 3 shows a full vectorial calculation by Scheme (II).
The qualitative features of the wave propagation along the
waveguide is well simulated by this scheme. This result
suggests that the symplectic integrator is applicable to the
three-dimentional problem. However, the field profile error
under the same accuracy test as in Fig. 2 are larger than that of
the FDTD method. At this time, it appears that the dispersion
error of Scheme (II) is too large to simulate the field profile,
whose wavenumber range is as broad as the initial field profile
shown in Fig. 1. We anticipate that, through further research,
we can improve the accuracy of the three-dimentional scheme.
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