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Time-Domain Simulation of Electromagnetic
Field Using a Symplectic Integrator

T. Hirono, W. W. Lui, Member, IEEE and K. YokoyamagSenior Member, IEEE

Abstract—A new high-order-accurate method for time-domain [——INITIAL VALUE
simulation of a electromagnetic field is proposed. This method | ——THE SYMPLECTIC METHOD
is analogous to the one used in classical mechanics for con- | THE FDTD METHOD

tinuous system analysis. The symplectic integrator in classical
mechanics is utilized to calculate the time dependence of the
field. Using the same grid spacing and time step, it is demon-
strated that the proposed method is more accurate than the
conventional finite-difference time-domain (FDTD) method for
a two-dimensional problem. This method is also applicable to
full-vectorial Maxwell’'s equations in three dimensions.

1_2’?'_"1"*'7_'_'_'_7_‘ R R

(arbitrary unit)

Index Terms—Electromagnetic fields, FDTD methods, numer-
ical methods, symplectic integrator, time-domain analysis.

ELECTRIC FIELD AMPLITUDE

T2 e 8 10 12 14

I. INTRODUCTION POSITION  (unit-length)

HE finite-difference time-domain (FDTD) method hagi9- 1_. Ele_ctric field profiles simulating the propagation of the
two-dimensional TE-mode plane wave by means of the fourth-order

been used extensively for electromagnetic field Slmul@'}7mplectic method [Scheme (I) in the text] and the FDTD method. The
tion [1], [2]. A problem with the FDTD method is its demandsimulated region is a square whose sides are ten unit-length and are parallel

for vast computational resources. One solution is to useloghe® or v axis. The wave propagates diagonally. Permitivity is 1.0 and
. ermeability is 1.0 in the square. Thus, the phase velocity of the wave is

more accurate scheme than the conventional one to red:@.‘@)eunit-length per unit-time. The boundary condition is periodic. In both
the required memory size. Higher order differencing schemesthods, the plane lattice is square and its spacing is 0.05 unit-length

have been proposed [3]1-[51 and their performance for practiGip the time-step is 0.025 unit-time. The dot-dash line indicates the initial
prop [ ] [ ] P P (Z#ectric field profile on the diagonal line of the simulated region. The

applicatigns have been studied [6]__[9]' New higher 0rd§5lid line indicates the profile after 20000 time-step calculations by the
differencing schemes are also attracting attention [9], [10]. symplectic method. The dotted line indicates the profile after 20 000 time-step

This letter introduces a new time-domain method for deriy&lculations by the FDTD method.
ing high-order-accurate schemes. We treat the electromagnetic
field as a continuous system in classical mechanics [1NhereST(ciAt) andSy (d; At) are symplectic mappings from
The treatment enables us to use a numerical method fer 1) to (¢/,p’) as
a Hamiltonian system known as the symplectic integrator
method [12]—.[18]. Itis a Runge—Kutta method which preserves Sr(ciAt) i q = q+ At <3_T)7 P =p, )
the symplectic structure of the phase space. Its usefulness has a
been verified [12], [13], [16], [18]. Our results of elemen-
tary simulations of the electromagnetic field show that the
symplectic integrator method is promising.

Syv(d;At):q'=q, p' =p—d;At <8_V> (3)
dq
Parameters;; and d; are determined, so thaf,(At) can
approximate the time evolution of the system with the accuracy
II. FORMULATION of the order (At)*. They arec; = ¢ = 1/2, d; = 1,

We outline the explicit symplectic integrator for a systemd, = 0, for Sy(At) [14] and¢; = ¢4 = 1/{2(2 — 2V/%)},
governed by the HamiltoniaHy = V(q)+7(p), inwhichqis ¢y =c3 = (1-2/3)/{2(2-2/3)}, d; = ds = 1/(2—2/3),
generalized coordinates apds momenta conjugate @[18]. dy = —21/3/(2 — 21/3), d, = 0 for S4(At) [16].

The nth-order symplectic integrato$,,(At) for a time-step  In our formulation, the Hamiltonian, of the electromag-

At is netic field is
n w2 (VxA?
Sn(At) = [[ Srlcidt)Sy(didt) + O((A)") (1) H = / {g v T A} dedydz — (4)
=1
where
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Fig. 2. Field profile errors of the fourth-order symplectic method [Scheme
(1) in the text] and the FDTD method as functions of timeThe simulation
conditions are the same as those in Fig. 1, except for the calculation time-step
and the plane lattice spacing.

A vector potential, +‘.-'
-7 electric displacement; b
j current density. () ©

. . - Fig. 3. Full vectorial three-dimensional simulation by means of the sym-

We Con_5|derA as the generallzed Coordmat_es amdas the plgctic method [Scheme (Il) in text]. (a) Schematic draYWing of the simulgted
generalized momenta conjugateAo The equations of motion structure. The rectangular prism is a waveguide whose permittivity is 10%
are larger than the environment. The sinusoidal wave, whose vector potential is
polarized in thee-direction, radiates from the point source. The space lattice

OA . 5 is cubic and its spacing is one-tenth of the wavelength. The time increment is
9t = ®) one-twentieth of the wave period. (b) The amplitude of theomponent of
9 V x A the vector potential in thg-z plane [i.e. plane A]. (c) The amplitude (x 40)
a_Tr — _VUx < X ) s (6) of the y component of the vector potential in they plane (i.e., plane B).
t
We use a gauge in which the scalar potential is zero. ThusV?fi; V?2f value on the lattice pointz;,y;);
(5) and (6) are equivalent to Maxwell's equations when the h plane lattice spacing.
following equation is valid over the entire simulated regiom Scheme (I), the integrata$,(At) is used.
with the initial condition Scheme (Il) is based on another procedure in which the
V= —p 7) Hamiltonian (4) is discretized by the shape functions of the

finite-element method. We use the linear serendipity element
where p is the charge density. for cubic lattice [19] to integrate the term containikgx A.

Here, we introduce two spatial discretizing procedure fdrhe integration of the term containirjgr 7 is substituted by
the system. One procedure is the application of the finit§€ summation over the cubic lattice poinfs(At) is applied
difference method to (6). We apply it to the two-dimensiond® the spatially discritized Hamiltonian.

TE-mode condition with constant in the simulated region ~The scheme, to which the integraty (At) is applied, ap-
and without current density and make Scheme (1). When tREoximates all Maxwell’'s equations with accuracy of the order
electric field vector is along the axis, the right side of (6) is (A?)". Thus, the charge conservation condition is satisfied
reduced toV2A.(x,y,t)/u, whereV? is the two-dimensional With the same order of accuracy.

Laplacian. The Laplacian is descritized using the fourth-order

approximation on the square lattice such that ll. NUMERICAL RESULTS AND DISCUSSION
) 1 We compare the long-term simulation accuracy of Scheme
(Vf)ig~ W{02(fi+l,j+fi—1,j+fi,j+l+fi,j—l) (I) to that of the FDTD method in terms of the initial
— (figos+ ficog + fijuo+ fij_2) value problem under the periodic boundary condition. In both

calculation methods, initial values are discretized from the
F16(fi41g01 + fiovgn + fivnir + fisnit) il values of a continuous model, in which a plane wave
= 2(fi+rg42 + fimrgr2 + fivrj—2 + fici—2  with a nonsinusoidal electric field profile propagates without

+ fivoj41 + ficoj41 + figo,j—1 + fic2,j—1) any changes in the profile. Fig. 1 shows the initial profile of

—252f; ;} (8) the electric field on the diagonal line in the simulated square

region, the profile after Scheme-(l) calculation for 20 000 time
where steps, and that obtained by the FDTD method for the same
S function of (x,y); time steps. The Scheme-(l) calculation preserves the initial

fii f value on the lattice pointz;,y,); field profile better than the FDTD method. Scheme (1) takes
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